
Efficient Compilation of High-Level Data Parallel
Algorithms

MS-CIS-94-17
LOGIC & COMPUTATION 78

Dan Suciu
Val Tannen

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

April 1994

19950203 191

MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for thn collection of information is estimated to average I hour per response, including the time tor reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
DavisHighway Suite 1204. Arlington. VA 22202-4302. and to the Officeof Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

t-fichn-jr.al rp.rtnrt

4. TITLE AND SUBTITLE

Efficient Compilation of High-Level Data
Parallel Algorithms

6. AUTHOR(S)

D. Suciu, V. Tannen

5. FUNDING NUMBERS

bftftLDZ-?1-Z~O0$\

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

University of Pennsylvania
Department of Computer and Information Science
200 S. 33rd Street
Philadelphia, PA 19104-6389

PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND AODRESS(ES)

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

AfoWH.31-rM-fc

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

122. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

We present a high-level parallel calculus for nested sequences, NSC, offered as a possible theoretical
"core" of an entire class of collection-oriented parallel languages. NSC is based on while-loops as opposed
to general recursion. A formal, machine independent definition of the parallel time complexity and the
work complexity of programs in NSC is given. Our main results are: (1) We give a translation method for a
particular form of recursion, called map-recursion, into NSC, that preserves the time complexity and adds
an arbitrarily small overhead to the work complexity, and (2) We give a compilation method for NSC into
a very simple vector parallel machine, which preserves the time complexity and again adds an arbitrarily
small overhead to the work complexity.

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE COOE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-U
298-102

Efficient Compilation of High-Level Data Parallel Algorithms

Dan Suciu Val Tannen*

Deptartment of Computer and Information Science
University of Pennsylvania

Philadelphia. PA 19104-6389, USA
Email: (suciu,val)@saul.eis.upenn.edu

Abstract

We present a high-level parallel calculus for nested sequences.
.VSC. offered as a possible theoretical "core" of an entire
class of collection-oriented parallel languages. .VSC is based
on u'/ii/e-loops as opposed to general recursion. A formal,
machine independent definition of the parallel time complex-
ity and the work complexity of programs in .VSC is given.
Our main results are: (1) We give a translation method for
a particular form of recursion, called map-recursion, into
.VSC. that preserves the time complexity and adds an arbi-
trarily small overhead to the work complexity, and (2) We
give a compilation method for .VSC into a very simple vec-
tor parallel machine, which preserves the time complexity
and again adds an arbitrarily small overhead to the work
complexity.

1 Introduction

There are many advantages to programming in a high-level
language. However, while sequential algorithms are most
of the time designed and evaluated in reasonably high-level
terms, the situation with parallel algorithms is - by neces-
sity, so far - more complicated. The issue is intimately con-
nected with the existing efforts to bridge the gap between
the theoretical design of parallel algorithms and practical
programming on massively parallel computers.

In the 'ase of data paralh lism. the work of Blelloch [Ble90.
Ble93] and Blelloch and Sabot [BS'JO] has made substantial
progress on this issue. For example, if we manage to rep-
resent an algorithm in a high-level language such as XESL
with a certain work and time (a.k.a. element or step) com-
plexity and if the representation satisfies certain restrictions
then we are guaranteed an implementation of the same algo-
rithm with the same asymptotic time and work complexity
in terms of a low-level parallel vector model, which in turn
admits efficient implementations on various architectures,
for example the CM2. The present paper is proposing a
different treatment of similar goals.

par; Kill NSF < I runt ('CK-:M|.

We start with a somewhat abstract high-level language
which represents and manipulates mostly nested sequences
(lists) and so we called it NSC, for nested sequence calculus
(section 3). We regard AfSC as a possible theoretical "core"
of an entire class of collection-oriented parallel languages. In
keeping with the tenets of data parallelism [HS86], AfSCs
only parallel operation is map (apply-to-all). We give a pre-
cise high-level definition of parallel complexity (in the work
and time framework [Jaj92]) for J\fSC programs.

Blelloch [Ble90, Ble93] gives convincing evidence that
nested map's on nested sequences (what he calls nested par-
allelism) can enhance the expressiveness of a data parallel
language. But these high-level features are quite removed
from concrete parallel architectures or even the parallel vec-
tor model and need to be compiled away. Unnesting the
nested parallelism is at the center of the compilation tech-
nique of [Ble90, BS90. Ble93], However, in a language with
general recursion, this technique is guaranteed to preserve
the asymptotic parallel complexity only for programs that
satisfy a certain semantic condition called containement.

.VSC is based on while-loops rather than general recur-
sion. This will surely impose some limitations, although not
that many: our first main result consists of showing that a
large and practically relevant class of programs, called map-
recursive, can be translated into .VSC while asymptotically
preserving the time complexity and adding an arbitrarily
small overhead to the work complexity (theorem 4.2). It
even turns out that some recursive programs which are not
contained in the sense of [Ble90] are in fact map-recursive.
The major benefit however is that we can compile ,\rSC
without the need for an unbounded stack of vectors, as gen-
eral recursion would require. Avoiding the stack is a good
idea because SIMD architectures associate a relatively small
memory with each processor. A program that generates
many entries in its vector stack will run out of memory even
if the vectors are very short and hence much of the total
amount of memory of the machine remains unused. We
believe that our compilation technique can lead to better
memory management. Of course, this needs to be tested in

practice.
Following Blelloch. we define a simple parallel vector

model in order to describe abstractly the class of target ar-
chitectures for our compilation method (section 2). Our
BVRAM (Bounded Vector Random Access Machine) differs
from the VRAM [Ble90] primarily in that it has a finite num-
ber of vector registers. This emphasizes the absence of a run-
time vector stack. Of course the number of registers needed

depends on the source program being compiled. Another
important difference is that we need less powerful communi-
cation primitives. The BVRAM has no general permutation
instruction, and its communication primitives can be imple-
mented on a butterfly network with nlog n nodes in 0(log n)
steps. The BVRAM can be efficiently implemented on SIMD
architectures such as CM2 and MasPar MP-1, and it has the
potential of efficient implementation on MIMD machines as
well, such as CM5, Paragon XP/S, KSR1 etc.

Our second main result is a technique that compiles any
AfSC program into a BVRAM program again while asymp-
totically preserving the time complexity and adding an arbi-
trarily small overhead to the work complexity (theorem 7.1).
Along the way we also give a simulation that allows us to
understand AfSC complexity in terms of the complexity of
computations on a certain flavor of PRAM (proposition 3.2),
we show how to implement the BVRAM instructions on a
butterfly network (proposition 2.1), we connect AfSC with
some standard parallel complexity classes (proposition 6.2),
we show how to represent in AfSC Valiant's 0(log n log log n)
time sorting algorithm [Val75, Jaj92] (section 5), and, as
part of the compilation process, we define an intermediate
abstract language - the sequence algebra - which has the
same power as BVRAM's but may prove more flexible in
connecting to the designs of the future (section 7).

AfSC borrows heavily from our experience with languages
for collection types [BTS91, BBW92] and it is worthwhile
mentioning that many of its operations make as much sense
for sets and bags (multisets) as for lists (sequences). It mat-
ters to us, though it may not be so relevant to the goals of
this paper, that AfSC is based on a clear, statically checkable
type system, that we understand the meaning of AfSC pro-
grams independently of their parallel execution, and that we
know how to reason about them - for example how to vali-
date source to source optimizations. We have in mind appli-
cations to databases and this naturally brings up important
complexity issues. In a previous paper we have shown a
tight connection between a related data parallel language
for sets and the class NC [SBT94]. This in turn has led us
to the more practical questions addressed here.

2 The Target: Bounded Vector Random Ac-
cess Machines

To compile the higher level programming language described
in section 3 only a very simple vector parallel model is
needed. The Bounded Vector Random Access Machine,
BVRAM, is a restriction of the VRAM introduced in [Ble90],
in that it only admits a fixed number of registers, and has
only particular communication primitives, not a general per-
mutation. The BVRAM can be efficiently implemented on
a wide range of parallel architectures, because: (1) only a
simple, rather particular form of communication is needed to
implement every instruction of the BVRAM, and (2) mem-
ory management at each processor is simplified by having
only a bounded number of vector registers, as opposed to
an unbounded number in the VRAM model.

A BVRAM, M, consists of afixed number of vector reg-
isters Vi, Vr. Each V, can hold a sequence (a vector) of
natural numbers of arbitrary, but finite length. To keep the
model simple, we don't include scalar registers: a number is
represented by a sequence of length 1. A program for M is a
sequence of labeled instructions, from the following instruc-
tion set. For some of the instructions below, it is convenient

to view a pair of registers V,, Vj in which the length of the
first equals the sum of the numbers in the second as a nested
sequence. E.g., intuitively we view [xo, ii, zo, «i, Z2], [2, 0, 3]
as standing for the nested sequence [[x0, x{\, \\, [zo, z\, 22]]-

• Move instruction: V <— Vj.

• Arithmetic operations, of the form Vi <— Vj op Vj,-.
Here op is an arithmetic operation from a set E. Vj
and Vk must be arrays of the same length, and the
operation op is applied simultaneously on all all ele-
ments of Vj and Vk from the same positions, and the
result is stored in Vi. In general we leave E unspeci-
fied, but mention here that for theorems 4.2 and 7.1

E has to contain +,—,*,/, right-shift, log2, while for
proposition 6.2 we require that all operations in E be

in NC. Monus, written m — n, is defined asm-«
when m > n and 0 otherwise.

• Sequence oriented operations: V, *- Q loads the empty
sequence in V,. V,; +- [n], where n € N loads the
singleton sequence [n] into V,. V, <— Vj@Vk appends
Vj and Vk and stores the result in Vt. V, <— [length{V3)}
computes the length of Vj. V, <— enumerate(V3) loads
the sequence [0,1,..., n - 1] into Vi, where n is the
length of Vj.

• Bounded monotone routing V <— bm-route(Vj, Vk, Vi);
here Vk and Vi must have the same length. The ef-
fect is that each element in V is replicated a num-
ber of times equal to the corresponding number in Vjt.
In addition, it is required that the result matches in
length the sequence Vj (i.e. initially Vj,Vk represent
a nested sequence). E.g. if V, = [zo, £i, 20, zi, 22],
Vk = [2,0,3] and V = [a,b,c], then the instruction
Vi <— bm.route(Vj,Vk,Vi) stores [a, a, c, c, c] into V;.

• Segmented bounded monotone routing V, <— sbm.route
(Vj,Vk,Vi, Vm). Here, V,,Vk and Vi,Vm must be nested
sequences, and length(Vk) = length(Vm). Then, the
subsequences of V are replicated according to the num-
bers in Vk and the result is stored in V. E.g., suppose
Vj = [x0,xi,za,z1,z2], Vk = [2,0,3], V = [ao,ai,b0,
&!, 62,co,ci,c2] and Vm = [2,3,3]. Then, after V, <-
sbm-route(Vj, Vk, V, Vm), V, will hold the value [a0,ai,
ao,ai,co,ci,c2,co,ci,C2,co,ci,C2]. In the particular
case when Vk,Vm have length one, this computes the
cartesian product of V, and Vj. Note that the length
of the output is < length(Vj) * length(Vi) and that
bm-route can be expressed with two sbm-route instruc-
tions.

• Selection V, <- <T{VJ). The effect is that the nonzero
values of Vj are packed and moved into V,. E.g. if
Vj = [3, 0,1, 0, 0, 4], then [3,1, 4] is stored in V,.

• The unconditional jump goto I and the conditional
jump if empty?(Vt) then goto I, where / is a label of
some instruction. The conditional jump is taken iff V,
currently holds the empty sequence.

• halt, stops the program.

We associate with each BVRAM program P two num-
bers: r,,r0, the number of input and output registers. P
expects r, inputs in the registers \>\ ,..., Vr,, and returns
r0 outputs, in V,..., VTo. For some input, the result of P

might be undefined, if P enters an infinite loop, or if an er-
ror occurs. For a terminating execution of P, we define the
parallel time complexity T to be the total number of in-
struction executed by P, i.e. each instruction is considered
to have parallel time complexity 1. Similarly, we define the
work complexity W as the sum of the work complexities
of all instructions executed by P, where the work complexity
of some instruction is defined to be the sum of the lengths
of its input and output registers.

As opposed to VRAMs [Ble90] there is no general permu-
tation instruction on a BVRAM (but one can be computed
with an increase in the time or work complexity). This may
lead to more efficient implementations on fixed-connection
networks, as exemplified by the following proposition.

Proposition 2.1 Any BVRAM instruction of work com-
plexity W can be implemented in time 0(log n) on a butter-
fly network with nlogn nodes, where n = 0(W), using only
oblivious routing algorithms.

Proof. (Sketch) The arithmetic operations involve
no communication at all, thus can be implemented in O(l)
steps. The append operation Vt <— V}@Vk only requires a
monotone routing of the values in Vk. This can be done
in 0(log n) steps, using the greedy routing algorithm, see
[Lei92], pp. 534. bm.route is implemented by a monotone
routing, and takes 0(log n) steps with the greedy algorithm.
For sbm.route, suppose first that length{V3) = length(Vi) =
1, i.e. sbmjroute computes the cartesian product of V; and
Vk- Also, suppose that the length of V, and Vk are pow-
ers of 2, namely 2P and 2q respectively. Take n = 2p+q;
then we have 2P packets residing in the first 2P rows of a
butterfly with 2p+? rows, and we have to route the packet
with address 00 ... 0up_i ... «i uo to all addresses of the form
vq-i ... vivoUp-i ... u\«o- This is done in q stages, starting
with the higher dimension, using the greedy algorithm. In
the general case of sbm-route, we have to replicate a num-
ber of smaller sequences. First, round upwards to the closest
power of 2 the length of each such subsequence, and spread
the sequences such that each sequence of lenght m starts
at an address divisible by m. Next, perform in parallel all
replications, as described above. □

When the number n of available processors is less than
the number W of elements in an array, then we group —
adjacent elements of the array in the same processor. The
above proposition can be extended to this case: some in-
struction of complexity W can be implemented on a butter-
fly network in 0(— log n) steps.

The Source:
(AfSC)

The Nested Sequence Calculus

We use types to explain the structure of AfSC and classify
its features. The types are given by the grammar t ::= unit \
N | / x t | t + t \ [t]. unit has exactly one value: the empty
tuple (). N is the type of nonnegative integers. The values
of the product type s x t are pairs (x,y), with x € s, y S
t. [t] is the finite sequences type over t: it contains all
sequences [xo, ■ ■ ■ , xn-i], with n > 0 and lo i„-i € t.
s + t is the disjoint union type of s and t; its values are
of the form itii(i) with x E s and in2(y) with y € t. We

define the boolean type B = unit + unit, and identify its
values ini(()) and if!2J()) with true and false respectively.
Extending the list of built-in types with reals, strings, etc.,
can be done while preserving all results.

The primitives of AfSC are chosen to be operations nat-
urally associated to its types. Its expressions belong to
one of two distinct syntactic categories: terms, denoted
by M, N, P,U,V, etc., which have some type t, and func-
tions, denoted by F, G, etc., have associated two types, the
domain s and codomain t. By abuse of the language we say
in this case that the "type" of some function F is s —► t.
However s —* t is not a type per se, which makes constructs
like s —<■ (ti —*■ t2) or (s\ —► S2) —► t impossible. Both terms
and functions may contain free variables. See appendix A
for a full and formal description of the language):

• Variables x, error fi, constants n (where n £ N),
arithmetic operations M op N, where op 6 E (recall
from section 2 that £ = {+, —, *,/,...}), and equality
M = N.

• Constructs associated with the product type: (),7ri,7T2,
(M, N). Here () denotes the empty tuple, (M, N) is a
pair, while 7ri, 7T2 are the projections, with the meaning

/ * def , * def
Ki(x,y) = x,7r2(x,y) = y.

• Constructs associated with the sum type: ini(M),
in2(N), and case M of in\(x) => N 202(1) => P.
The latter is defined to be equal to N[U/x] when M =
in\{U), and respectively to P[V/y], when M = in2(V).

• Constructs associated with functions: Ax : s.M and
F(M). The former is called a lambda abstraction, and
is a function (as opposed to a term), of type s —>■ t,
provided that M is a term of type t. The second
construct, F(M), is a term called function application
having type t, provided that F is some function of type
s-»(, and M is a term of type s. Although the type
s is part of the syntax of Ax : s.M, we shall drop it
when it is clear from the context. Note that Ax : s.F,
where F is a function, is not a legal construct in AfSC,
nor is Ax : s —► t.M, i.e. no higher order functions are
allowed.

• Iteration: while(P,F) is some function of type t —* t,
provided that P and F are functions of type i —► B
and t —► t respectively.

• Constructs associated with collections (these constructs
work on sequences but also make sense for other kinds
of collections, like sets and bags [BBW92]): 0. W) ,
M@N, flatten(M), length(M), get(M), and map(F).
Here Q denotes the empty sequence, [M] is the single-
ton sequence, and @ is the append operator. Next,

flatten ([xo, ■ ■ ■, xn-i\) = xo@xi@ ... @xn-i, and
length(M) returns the length of some sequence, get is

defined by get([x}) = x, get(\\) = get([x0,xi, ■]) =
Q. Finally map(F) is a function of type [s] —> [t], pro-
vided that F is a function of type s —* t. Its meaning

is: map(F)([x0,...,x„-1]) = [F(x0),..., F(xn-i)]. "SPEi

• Constructs associated only to sequences, and not to
other kinds of collections: zip{M, N), enumerate(M),
and split(M, N). The meanings are: zip([xo, ■ ■ ■, in-i]:

[yo,...,yn-i]) = [(x0,2/o),...,(x„_i,2/n_i)] {zip is
undefined if its two arguments have different lengths),

def
enumerate([xo, ■ ■ ■, xn-i]) = [0,..., n — 1]. Finally

M^ti^hSS^L'%
i_. ÄvsSlaMiJb&f (QB

iSiet

M
««1 _

splitiM, N) splits M according to the numbers con-
def

tained in N; e.g. split([a, b, c, d, e, /], [3, 0,1, 0, 2]) =
[[a, 6, c], Q, [d], Q, [e, /]]. It is denned only if the sum of
elements in N equals the length of M.

Note that any function in AfSC can, in a fixed amount of
time, only increase the size of its input by some polynomial.
Had we introduced as a primitive in the language something

like i(n) d= [0,..., n-1], which generates an arbitrarily long
list out of a number, this property would fail. From this
small set of primitives, we can derive a rich set of functions.
Some examples:

def
Database projections, II; : [<i x t2] —> [*.], II, =

map(xi).
Conditionals, if x = y then M else N is expressed by

case (x = y) of irn(v) => M in2(v) => N, where u,v are
variables of type unit, not occurring in M,N.

Broadcasting. p2(x, [yo, ■ ■ ■, J/n-i]), which is defined to

be [(x, yo),..., (x, yn-i)], can be expressed as p2(x, y) =
map(\(v).(x,v))(y) and has the type p2 : 5 x [t] ->■ [s x t].
When x itself is a sequence, p2(x, y) essentially computes the
cartesian product of x and y. (The name p2 is motivated by
other considerations [BBW92].)

Bounded monotone routing. bm.route((u,d),x), ex-
pressed as U1(flatten(map(p2)(zip(x, split(u, d))))), has type
bra-route : ([s] x [N]) x [t] -► [t]. brri-route is essentially the
same operation as secribed in section 2. E.g. bm.route(([uo,
ui,u2,vo,v1],[3,0,2]),[a,b,c]) = [a,a,a,c,c]. The bound
u prohibits us from constructing a very long sequence in
constant parallel time. An unbounded monotone routing
m-route : [N] x [t] —> [t] can be defined in AfSC (with while),
but requires more than a constant number of parallel steps.
This is indeed necessary, since m.route([n],[a]), produces
the sequence [a, a, ... , a] of lenght n, whose size is not poly-
nomially bounded by the input. Finally, note that in the
context of nested sequences, our bounded monontone rout-
ing is not truly "monotone". Indeed, bm-route(([(),()],[2]),
[[a,b,c]]) = [[a,b,c],[a,b,c]], and the relative order of a, b
and c has not been preserved. This forces us to introduce
sbm-route in the BVRAM model.

Selections. <n : [s + t] -► [s], a2 : [s + t] -+ [t]. cri(x) se-
lects from some sequence x only those elements which have
the form imfii), while a2(x) selects only the elements of the
form m2(n). E.g. if x = [mi (a), in2(b), m2(c), in2(d), ini(e),
in2(f)], then <n(z) = [o,e], a2(x) = [b,c,d,f]. <n is defined

by ffi(x) =' flatten{X{u).case u of irn(u') => [u] in2(u") =>
\})(x), and (72 is defined similarly.

Operations on lists, first and tail can be defined by:

first(x) =' get(get(bm-route{([()],[l,0]),

split(x, [1, length(x) — 1]))))

tail(x) = get(bm.route(([()],[0,l]),

split(x,[l,length(x) - 1])))

If x is empty, split will produce an error. Similary we can de-
fine last and remove-last, which return the last element, and
delete the last element from a sequence, respectively. In gen-
eral, we can access any element of some sequence of length
n in O(l) parallel time, and with 0(n) work complexity (we
formally define below the time and work complexity). Using
map, we can produce an arbitrary permutation in O(l) par-
allel time, but with an increase of the work complexity to

0(n2). Using radix sort in base ne, for some arbitrary e > 0,
we can even compute an arbitrary permutation in 0(1) par-
allel time with 0(n1+€) work complexity. Alternatively, we
can use an optimal sorting algorithm (see e.g. [Jaj92]), which
reduces the work complexity to 0(n) by increasing the time
complexity (e.g the sorting algorithm described in section 5
has T = 0(log n log log n)). Thus, the cost of performing an
arbitrary permutation is visible in the higher level language.

The compilation theorem 7.1 is robust enough to hold if
AfSC is extended with additional primitives, like a general
permutation permute or scan operations, provided that cor-
responding instructions are added to the BVRAM model.
E.g theorem 7.1 can be extended to prove that AfSC +
permute can be efficiently compiled into BVRAM+permute.
But in its present form theorem 7.1 is stronger, because it
proves a general permutation is not necessary in a BVRAM
in order to compile efficiently a high-level language like AfSC.
This is of importance in view of the high cost of implement-
ing a general permutation on existing massively parallel ar-
chitectures [KLGLS90].

As promised, we will give a high-level definition of par-
allel time complexity T and work complexity W for AfSC
programs, in an machine independent way. The idea is for
the parallel complexity of a program to be inferred from
its structure in the same way in which the sequential com-
plexity is inferred from the structure of a program in a
sequential language. In our case, all primitive operations
(including @ and flatten) take one parallel step, while in
a map(F)([x0, ■ ■ ■, Xn-i]), the n executions of F are done
in parallel. The iteration construct however may count for
several steps hence our definition cannot be done solely by
induction on programs. This is handled by providing a for-
mal operational semantics and then counting the depth of
derivations in it. The work complexity is tied to the size of
the data that is being manipulated.

Formally, we start by defining S-objects by the gram-
mar: C ::= () | n | (C,C) | im(C) | in2(C) \ [C,...,C]
where n£N. We only consider typed S-objects objects. We
adopt a unit size complexity measure, and define the size
of some S-object by size(Q) = size(n) = 1, size((C,D)) =
1 + size(C) + size(D), size(ini(C)) = size(in2(C)) = 1 +
size(C), size([C0,... ,C„_i]) = 1 + £i=o,n-i size{d). We

use true and false as abbreviations for mi(Q) and in2(Q).
Next, we define the evaluation of some term (also called

the operational semantics) in a natural semantics style, as
in [Kah87]. This consists of rules which simultaneously de-
fine a binary relation M ij-C meaning that the term M eval-
uates to the S-object C and a ternary relation F(C) -U- C"
meaning that the function F applied to the S-object C eval-
uates to C". E.g. if F = Xx.flatten(x)@[lOO] and C =
[[3, 5], [2]], then F(C) JJ. [3,5,2,100], Some representative
rules are:

M tym N \].n
M + N JJ. ra + n

M\l(C,D) MV(C,D)
7Tl(M)llC

M J) C N ij-D
(M,N)H.(C,D)

M i)-[Co,...,Cm-i]
M@N JJ.[Co,

F(Co) l)-Do

TT2(M) "-£>
tfl|C F(C) 1| D

F(M)l)-D

N l)-[Do,...,Dn-l]

i Orr -i,D0,
F(Cn-

map(.F)([C,o,...,C'n_iJ)J|U>,o,
P{C)i). false

while{P,F)(C)\].C

.,Dn-{\

"-■Pn-l
,Dn

P(C) JJ true F(C) JJ. C whilejP, F){C) JJ. D
while(P, F)(C) ij-D

The complete set of rules is given in appendix B where
we explain a technical complication caused by the presence
of bound variables (lambda abstraction) in the language,
namely the need to use environments as in [Cur88].

Thus, to evaluate some closed term M, one has to con-
struct a proof tree, whose nodes are labeled with rules of
the operational semantics, such that its root is labeled with
some rule with conclusion M JJ C. Based on this operational
semantics, we now define the time and work complexity of
AfSC in a machine independent way.

Definition 3.1 Consider some AfSC term M. The time
and work complexity T(M), W{M) of M JJ C are de-
fined by induction on the proof of M JJ C. The induction
is done simultaneously with the definition of the time and
work complexity T(F, C) and W(F, C) of some evaluation
F(C) 1J D, where F is a AfSC function, and C,D are S-
objects. Except for the rules for map and while, for every
rule of the form:

M1ILCi,...,MnHCn
M JJC

we define:

T(M) = 1 + Y^T(M') W(M) = SIZE+J2W(M')

where SIZE is the total size of all S-objects mentioned in the
rule (in the premises and the conclusion, including the en-
vironments). For the map-rule, the definition ofW remains
the same, while the definition of T becomes:

T(M) 1 + max(T(M,))
t = l ,n

(this corresponds to the fact that the function is applied in
parallel on all objects in the sequence). For the while rule we
do not include in SIZE the size of the output D (otherwise,
the final output D of while would be counted as many times
as many iterations are performed by while). More precisely,
if the last rule of while(P,F)(C) JJ. D was:

P{C) JJ true F(C) JJ C" whilejP, F){C) JJ D
while{P,F)(C)^D

then:

T(while{P,F),C)

W{while(P,F),C) =

1 + T(P, C) + T{F, C) +

T(while{P,F),C)

size(C) + size(C) +

W(P, C) + W(F, C) +

W(while{P,F),C)

(i.e. size(D) is not included explicitly in W(while(P, F), C))

The language AfSC together with its notions of time and
work complexity is a model of parallel computation in its
own right but parallel algorithms are most commonly given
in terms of one of the several known flavors of PRAM. To
facilitate comparisons, we offer the following efficient simu-
lation (AfSC's version of Brent's scheduling principle, as it
were):

Proposition 3.2 Any AfSC function of time complexity T
and work complexity W can be simulated on a CREW PRAM
with scan primitives usingp processors with asymptotic com-
plexity 0(T + W/p).

Proof. (Sketch) Given some function / in AfSC, first
flatten / for an extended version of a BVRAM, with un-
bounded many vector registers and indirect addressing (es-
sentially the VRAM of [Ble90], but with the communication
primitives described in section 2). The resulting extended-
BVRAM program has the same time and work complexity
as /: see remark 7.3. Next use the simulation of an ex-
tended BVRAM on a CREW with scan primitives, in the
spirit of [Ble90]. We need a CREW instead of a EREW in
order to simulate bm.route and sbm-route. O

4 Expressing map-recursive functions in AfSC

Although it is described in a concise, mathematical style
(notice that we called it a "calculus" rather than a "lan-
guage") AfSC can be easily extended to a more user-friendly
language, by allowing a certain amount of block structure:
definitions of global/local variables and of nonrecursive func-
tions. There is a straightforward translation of such an ex-
tension back into AfSC, which we omit from this extended
abstract. Accomodating recursive functions though, is a
more delicate problem, which we address here.

Consider the following limited form of recursion:

Definition 4.1 A function definition is map-recursive if
it has the form

fun f(x) = c(x, map(f)(d(x)))

First, it is easy for a compiler to check whether a recur-
sive definition is of this form (in contrast, containment [Ble90]
is an undecidable property). Second, this form is general
enough to express many existent parallel algorithms: tail re-
cursive definitions, and what is usually meant by divide-and-
conquer recursion (for instance the worked example in sec-
tion 5) are map-recursive. Here are some recursion schemata
and a sketch of how to convert them into map-recursive form
(and in the process "parallelize" them) :

fun g(x) = if p(x) then s(x) else c(g(di(x)), g(d2(x)))

fun h(x) — if p(x) then s(x) else c(h(d(x)))

fun k(x) = if p(i) then s(x) else

if p'(x) then c(k{d1{x)),k(d2(x)))

elsec'(fc(di(z)),fc(<f2(z))>fc(<*3(z)))

For g, we construct a list of lenght 2, and recursively map
g on it (Quicksort has this form). For h, the list will have
length 1 (tail recursion is a particularization of this form), k
is more interesting, since it divides its input into either two
or three subproblems. Note that it is not contained [Ble90],
so the compilation techniques described here work on some
cases on which those of [Ble90] don't. In converting k, the
list will have length 1, 3 or 4, where the first element is a
tag, and k is slightly modified to return the identity on the
tag (a sum of types is used here).

The first of our two main results states that map-recursion
can be translated (in a source-to-source manner) into a AfSC
expression, while preserving its time complexity and "al-
most" preserving its work complexity.

Theorem 4.2 Consider some function f defined in AfSC
extended with map-recursion, with time and step complex-
ity T, W. Then, for any e > 0, one can construct a func-
tion /' in AfSC which is equivalent to f and which has time
and work complexity T' = 0(T) and W = 0{W1 + £) re-
spectively. Moreover, if the divide and conquer tree of f is
balanced, then W - 0(W).

Proof. For illustration, we consider only the function g
from above. Suppose the types are: g : s —» t, d\,d,2 : s —* s,
and c : t x t —» t. Not surprisingly, g can be expressed in
AfHA, without recursion, in two steps, called divide phase
and combine phase in [MH88]:

Divide Phase Start with the singleton sequence y = [x]
of type [s], and apply repeatedly the function flatten
o map(Xx.'d p(x) then [x] else [dj(x),d2(x)]) having
the type [s] —* [s], until all its elements satisfy the
predicate p. (We need to tag the elements resulting
from [x], to avoid applying p repeatedly on them; we
omit the details.) Call y the resulting sequence.

Combine Phase Start by map-ing the function s on y,
and then apply repeatedly c to adjacent elements of
y: some additional bookkeeping is necessary to make
sure eis applied to the correct pairs (e.g., it suffices to
store the depth in the divide and conquer tree for each
element in y, and only combine adjacent elements if
they have the same depth). Stop when there is only
one element in the resulting list.

Obviously, the translated g will have time complexity
0(T). The work complexity is also preserved, in the case in
which the divide an conquer tree for the computation of g(x)
is perfectly balanced. When the is unbalanced, the leaves
which are reached sooner have to coexists in the same se-
quence with those nodes which need more divide steps, thus
adding to the total work complexity. Let v be the number of
different levels in the divide and conquer tree which contain
leaves E.g. in an almost perfectly balanced tree, v = 1 or
v = 2, while in a total "unbalanced" tree, v can be equal to
the total number of leaves, but still v < W(g,x). We can
compute v in time and work complexity 0(T),0{W), by
simulating only the divide phase, without retaining the re-
sults. Let e > 0. We improve the divide phase, such that the
time and work complexities of the translation of g into AfSC
become 0(T) and 0(ucW) respectively. Namely, we start
with 7 + 1 variables z,, i = 0,..., j, initialized to [], and
with y initialized to the singleton [x\. We apply repeatedly
the divide phase on y; whenever some leaves are reached, we
move them into zo. We only allow zo to be touched vc times,
after which we move its entire content into z\, and empty
zo. We repeat this process, but only allow z\ to be touched
ve times, at which point, we empty z\, by moving every-
thing into 22. In general, we allow z, to accumulate only vc

times, after which we empty it, by moving everything into
Zi+i. Obviously, a number of v" levels of leaves must be
discovered, before making one move into z,; thus, zi will

be filled exactly once, with the leaves from all v levels. To
compute the total additional work complexity, observe that,
each leave travels exactly once through z0, Z\, ■ ■ ■, Zi, and

in each z, is "touched" exactly i/£ times. Thus, the total
work complexity is bounded by {\ + l)vzW = O(v'W).
Of course, rather complicated bookkeeping is necessary to
keep all elements in z, sorted. The combine phase is done
similarly, but in reverse. D

The technique of theorem 4.2 seems to extend to more
general recursion Schemas than the limited recursion. The
main kind of recursion to which this technique does not ap-
ply is one in which some recursive call to / uses an argument
which is computed with a recursive call itself, in the style of
the Ackerman function: A(x, y) = A{x — l,A(x, y — \)). We
argue that very few practical algorithms make indeed use of
such recursion Schemas.

5 An 0(log n log log n) Mergesort Algorithm Ex-
pressed in AfSC

As evidence for the practical expressiveness of AfSC we de-
scribe in it Valiant's fast mergesort algorithm [Val75, Jaj92],
see the program in figures 1, 2, 3. As we have explained at
the beginning of section 4 we are free to use block struc-
ture (we choose a syntax close to ML [MTH90]). More im-
portantly, in view of theorem 4.2 we are free to use map-
recursive definitions, or other recursive Schemas which are
convertible to map-recursion. The main function mergesort
in figure 1 has the same recursion schema as the function g
of section 4 and hence can be converted to a map-recursive
form. Its parallel time complexity is 0(log re log log n).

The fast, O(loglogm) time merge function exhibits a
more complicated kind of map-recursion. To merge two
sequences A — [oo,...,om-i], B = [bo,... ,bn-i], we di-
vide A into \y/rn\ subsequences of length < \fm\ let AA =
[Ao, ■ ■ ■, A^_x] be the resulting nested sequence. Next,
we find for each subsequence Ai the corresponding subse-
quence Bi in B, with which Ai has to be merged, and
apply recursively merge on all pairs (A,,B,); let BB =
[Bo, ■ ■ ■, -By^-i]- Thus, the general structure of merge is:

fun merge(A, B) =
if length(A) < 2 then direct.merge(A, B)
else let ... compute AA, BB as explained

in flatten(map{merge){zip{AA,BB))) end

which can be obviously translated into a map-recursion.
Figures 2 and 3 contain some auxiliary functions used in

merge. The function index(C,I) expects a sorted sequence
of indexes / = [z'o,..., ik-i] and, for C = [Co,..., C„_i],
returns the sequence [C,0,..., Cik_1]: it has constant time
complexity and work complexity = 0(n + k). The func-
tion indexsplit(C, I) splits C according to the indexes in /,
again provided that / is sorted, with similar time and work
complexity. We use the construct filter(P) : [t] -+ [t], which
for some predicate P : t —>■ B returns the sequence of all
elements satifying P. It is expressibel in AfSC by:

filter(P)(x) = flatten(map(\uM P(u) thenfu] else [\)(x))

The functions first, tail, last, remove-last and bni-route
are defined in section 3.

Using the techniques described in [Jaj92], the merge func-
tion can be transformed to become optimal, i.e. to reduce its
work complexity from 0((m + n) log log m)) to 0(m + n).
This also gives us an optimal (i.e. with O(nlogn) work
complexity), 0(log n log log n)-time sorting function. The
divide-and-conquer trees for both the sorting and the merg-
ing function are balanced, hence the translation of theo-
rem 4.2 gives us an optimal 0(log n log log n)-time sorting
function in AfSC.

fun mergesort(A) =
if length(A) < 1 then A
else let val n = length(A)

val AA = split(A, [n - n/2, n/2])
in merge(mergesort(first(AA),

mergesort(last{AA))))
end

fun merge(A, B) =
if length(A) < 2 then directjmerge(A, B)
else
let val m = length(A)

val ra = length(B)
val J4' = ,s9rt_positzon.s(j4)
val 5' = sqrt-positions(B)
(* J4', 5' have lengths -^/m and -^/n respectively
val R' = direct-rank (A1, B')
val BB\ = sqrt.split(B)

(* split B into ^/n blocks *)
val a-B = zip(A',index(BBl,R'))

(* group each a' with its block *)
val RR' = map(rank-one)(aJB)

(* rank each a' in its block *)
val R = map(X(x, y).(x - 1) * y/n + y)

(zip(R', RR'))
val AA = sqrtsplitA
val BB = indexsplit(B',R)

in flatten(map(merge)(zip(AA, BB)))
end

Figure 1: Valiant's O(log n log log n) sorting algorithm.

fun rank-one(a, B) = length(filter(Xb.b < a)(B))

fun direct-rank(A, B) — map{\a.rank-one(a, B)){A)

fun sqrt-positions(C) =
let val n = length(C)

val / = filter(\i.i modyfn = Q)(enumerate(C))
in index(C, I)
end

fun sqrtsplit(C) =
indexsplit(C', sqrt-positions(enumerate(C)))

fun direct-merge(A, B) =
let val R = direct.rank(A, B)

val 55 = indexsplit(B, R)
in first(BB)@

flatten{map{X{a, B).[a]@B)(zip(A, tail{BB))))
end

fun index(C, I) =
let val n = length(C)

val fc = length(I)
val zero-toJc = enumerate(I)@[k]

val de/ta_/ = map(-)(z!p(7@[ra],[0]@J))
val P = bm-route{(C, deltaJ), zero-toJk)

val delta-P = map(-)(zip(P, removeJast([0]@P)))
in bm-route((I, delta-P), C)
end

fun index~split(C, I) =
let val n = length(C)
in split(C, map(-)(zip(I@[n], [0]®/)))
end

Figure 3: The functions index and indexsplit.

6 Theoretical Expressive Power

In this section we give evidence that MSC is not too restric-
tive, as a tool for designing parallel algorithms. Namely,
let CRCW-TIME-PROC(T(rc), P(n)) be the set of functions
computable on a CRCW PRAM in time T(n) using P(n)
processors, and AfSC-TIME-WORK(T(n), W(n)) the set of
functions expressible in MSC with time and work complex-
ity T(n),W(n).

Proposition 6.1 ForT(n),W(n), that are suitable (in the
sense of [SV84J), we have:

CRCW-TIME-PROC(0{T(n)), 0(W(n))) C

MSC-TIME-W0RK{O{T{n)),W(n)o{1))

More, we get equality, if in the definition ofAfSC we restrict
the arithmetic operations to the set E = {+,—}, and if we

replace the unit size complexity (size(n) = 1 - see section 3)
def

with the logarithmic size complexity (size(n) = log n), in
the definition of the work complexity of AfSC.

The proof uses a theorem in [SV84], credited to Ruzzo
and Tompa, relating CRCW PRAM's to Alternating Turing
Machines, and is omitted from this extended abstract. Using
the above proposition and proposition 3.2 we can establish
that NC coincides with the functions in AfSC with polylog-
arithmic time and polynomial work complexity. Recall that
AfSC is parameterized by a set E of arithmetic operations.

Proposition 6.2 Suppose all arithmetic operations in E are
in NC. Then:

NC = MSC-TIME- W0RK(\og,o{1) n, n 0(1)N

Figure 2: Auxiliary functions used in merge.

7 Efficient Compilation of AfSC to BVRAM

Theorem 7.1 (Compilation Theorem) For every func-
tion f in AfSC with time and work complexity T, W, there is
a BVRAM, M, such that: Ve > 0, there is some program P
for M, equivalent to f, having time complexity T = 0(T)
andW = 0{W1+C).

Note that, in contrast to theorem 4.2, the number of reg-
isters only depends on / and not on e. A while-construct
can be rewritten as a tail recursive function, hence is con-
tained, according to the definition in [Ble90], and therefore
the compilation technique described there (for a VRAM,
with unbounded many vector registers) preserves its step
and work complexity. However, we cannot apply that com-
pilation technique here. Indeed, when viewed as tail recur-
sive function, the work complexity of while may increases
significantly, because the final result after iterating n steps
is touched n additional times, as the tail recursive function
returns from its calls. In the definition of the work com-
plexity for while, these n additional touches are not counted
(see definition 3.1). So the tail recursive translation has a
higher work complexity than the original while construct.
We need a stronger compilation technique in order to stay
within the lower work complexity. Moreover, we also only
have a bounded number of vector registers.

The proof goes through the following steps:

• Variable Elimination. We translate MSC into a rather
similar, but variable free language called Nested Rela-
tional Algebra, MS A. The new language only contains
functions fs -> t, i.e. no terms. Some term M in MSC,
of type t and with free variables Xi : s\,...,xn : sn,
will be translated into a function }M ■ si x ... X sn —> t
in MSA. The primitive functions and the constructs
in AfS^correspong roughly to those in MSC, with only
one additional primitive: the function p2 : s x [t] -*
[s x t] (see section 3 for its definition). The step and
work complexity of functions expressed in MSC and
MSA are the same. We omit the description of MS A
from this extended abstract; it can be found in ap-

pendix C.

• Flattening. We define a language for flat sequences,
called Sequence Algebra 5.4, and translate MSA into
SA. Namely, for any e > 0, we show how to translate
a function / of MS A with time and work complexity
T, W into an equivalent function in SA (thus using
only flat types), with time and work complexity 0(T)
and 0(W1+£). Of course, any function in SA can be
expressed in MSA with the same time and work com-

plexity.

• We show that SA and BVRAM are equivalent, in the
sense that any function in 5,4 can be simulated by a
BVRAM with the same time and work complexity, and
conversely. One direction of this equivalence helps us
completing the compilation, while the other direction
allows us to perform optimizations at the level of the
language SA, instead of BVRAM.

7.1 The Sequence Algebra, SA

The Sequence Algebra, SA, only has flat types. More pre-
cisely, we define first scalar types by the grammar: s :~
unit] N | s x s | s + s, and next define the flat types by the
grammar: t ::= unit | [s] | t x t | t + t.

SA was designed by choosing some set of functions ex-
pressible in MSA (or," equivalent, MSC) over flat types,
which seemed to be enough to allow the language MSA
to be translated (flattened) into SA. In addition, 5.4 is
defined in an inductive way, which enables us to prove, by
induction, properties about the functions expressible in SA,
e.g. lemma 7.2. SA stands in the same relationship to MS A

as the relational algebra stands to the nested relational al-

gebra [AB88].
Similar to MSA, SA is a variable-free language, contain-

ing some primitive functions, and a set of rules for combin-
ing them in order to get more complex functions. We briefly
describe SA below. A complete description of the language

can be found in appendix D.

• Error, viewed as a function Q : unit —+ 2.

• map' s of scalar functions, map(<p) : [s] —► [s1], where
p : s _+ s' is a scalar function, i.e., informally, a func-
tion defined in MSA (or, equivalently MSC) having
only scalar types as input, output, and intermediate
types, and without while.

• Operations on sequences: the empty sequence Q, ap-
pend @, length of a sequence, defined as length(x) =
[n], where n is the length of x, zip, hm-route, sbm.route,
selections a\,u2 (see section 3), and the emptyness test
empty?, of type [s] —► B.

• Functions over flat types: the identity id : t ->■ t,
composition of functions gof, projections 7r; : U xt2 -*
tt, pairing of functions (f,g), injections in, : U -*
ti+h, and sum of functions /1 + /2 : tx+t2 -► t, where
fi : t, -+ t (an if construct can be derived from this).

The latter is defined by: (/1 + f2)(ini(x)) = fi(x)

and(/i+/2)(«»2(x)) = f2(x).

• Iteration: while(p, f) is a function of type t -+ t, when-
ever f : i _,. f and p : t -> B (recall that B = unit+unit

and, thus, is a type of SA).

As for MSC we define the the time and work complexity
for some evaluation f(C) JJ-, where / is a function in SA and
C is its input (a flat S-object). Note that in the absence of
a general map there is no nested parallelism in SA.

Although SA does not contain nested types, like [N x
[N x IM]], it is strong enough to allow such types to be en-
coded into flat types. The key technical tool for that is
to encode some nonflat type [t], where t is a flat type, by
some flat type SEQ(t). For this we use segment descrip-
tors, as in [Ble90]. Formally, we transform some flat type
t into another flat type SEQ{t), defined by induction on

t: (1) SEQ{unit) (2) SEQ([s}) = x [s], (3)

SEQ(t x *') = SEQ(t) x SEQ(t'), (4) SEQ(t + t') =
[B] x SEQ(t) x SEQ(t'). The idea is that SEQ(t), although
a flat type, can encode sequences of elements from t, i.e.
values of type [<]. The main technical fact enabeling us to
prove efficient compilation is the following map lemma.

Lemma 7.2 (The Map Lemma) . Let f : t -► t' be
some function in SA, and let T, W be the time and work
complexity of map(f) (recall that map(f) is in MSC, but
not in SA). Then, for every e > 0, there exists some func-
tion SEQ(f) : SEQ(t) -* SEQ(t') in SA, of time complex-
ity 0(T) and work complexity 0(W1 + E), which simulates
map{f) : [t] -* [*']. More, the structure of SEQ(f) is inde-
pendent ofe, which implies that "number of vector registers"
used by SEQ(f) is independent of e.

Proof. (Sketch) This is done by induction on the struc-
ture of /. When / is map of a scalar function, SEQ{f) is
essentially the same map. When / is some operation on

a sequence, we only mention that SEQ(empty?) is essen-
tially a selection, SEQ(oi) essentially <n, SEQ(bm.route)
is a sbm-route, while SEQ(sbm-route) is another sbm-route.
The only difficult case is when / is while{p,g). We describe
very informally how to compute SEQ{while(p,g)){x), with
x = [x0, ■■■, in-i], of a BVRAM. We could use the same
idea as in theorem 4.2, but then the number of registers
would depend on e. Suppose x is in register V0. We will use
only two additional registers, Vi and V2, which are initially
empty. Let U be the number of iterations of while(p,g)(x,),
and assume without loss of generality that to < U < ... <
tn-i (we conceptually group all Xi's having the same U),
which implies U > »• Let 6 = ne, wt = W(while(p,g),xi)
and r = - -1. For the moment, assume that in the sequence

Xi)(/(j,),ff(
2)(ii),..., the last value (on position t,) has the

smallest size, denoted by s;, so stU < wt. The simulation
proceeds in r stages. The first stage starts by repeatedly ap-
plying SEQ(g) on x: whenever some n's reach the end of the
iteration, move them into Vi, until the first fr(< n') values
are extracted from VÖ, namely x,,i = 1, j. The additional
work complexity due to repeatedly touching the values in
Vi is 0(ncW). At this point, we move the entire Vi into
V2. For each of the remaining stages k = l,r - 1, apply
repeatedly SEQ(g) on z, and move, when they terminate,
the elements n, i = 6r"k+1 , JT^F fr°m ^> to Vi: at the end
of stage k, we move the entire Vi into F2- The additional
work complexity due to repeatedly touching some element

in Vi at this stage is < Si-pbjr. But since i > x,

> er-

Jr-T- ■LJU" Dllll"c * — (r-k + 1 >

T, hence the additional work
0 ' _ ... we have that i; > i _ o u.

complexity for x, is < stUb < w,nc, which, when added
up, accounts for only 0(ncW) for stage k, which adds up
to at most 0(\neW) = 0(ncW) for all r stages. During
all r stages, V2 is touched only r times, for an additional
0{W) work complexity. At the end of the last stage, all
Xi's (i = l,n) end up in V2, so V2 contains the result of
SEQ{while(p,g))(x).

Finally we have to show how to define SEQ(while(p, g))(x)
in the general case, when the sequence Xi,g(xi),g(2)(x,),...,
</(ti) has a minimum size on some position rm which is not
necessarily the last one. In that case we first compute rm,
for each i: this can be done with complexities 0(T) and
0(W), by simply applying SEQ(g) repeatedly, and elimi-
nating those elements which reach the end of their itera-
tion. Next we split the whole iteration SEQ(while(p,g))(x)
in two parts, essentially by synchronizing the n parallel iter-
ations at the moment when they reach their minimum size,
namely: (1) perform the n parallel iterations, as described
above, but stop the iteration over i, at stept rm, (2) con-
tinue the n parallel iterations, from step m, to U, using the
same technique, but in reverse (because now the minumum
sizes are at the beginning).

D

Remark 7.3 Had we had arbitrarily many registers instead
of a bounded number, we could have designed SEQ(f) with
time and work complexity 0(T) and 0(W) (instead of 0(T)
and 0(W1 + e), which is used in the proof of proposition 3.2.
Indeed, for f = while(p, g), assume again that, Vi = 1, n, the
smallest size, denoted s,, in the sequence Xi, g(xi), g(2'{xi),

gy-"(x,) is on the last position. Then SEQ(while(p, g)) n('i)(

is simulated by placing, upon completion, each element x,
in some different register V,. At the end we have to com-
bine the registers Vi,...,V„, which we do in the following
order: combine Vn with Vn-\, the result with V„_2, . • •, the

result with V\. The additional work complexity for the com-
bine phase due to x; is s{i, which bounded by Wi, because of
our assumption about si. We can extend the simulation to
the case when the smallest sizes Si are reached at arbitrary
moments, using the same technique as above.

Finally, we flatten the language MS A into SA We start
by flattening the types. For every type s oiAfSA, we define
COMPILE (s) to be a flat type, which encodes s. Namely:

def
COMPILE{unit) = unit

COMPILE (N) d= [N]

COMPILER x s1) = COMPILE(s) x COMPILE(s')

COMPILER + s')

COMPILER])

COMPILE (s) + COMPILE (s1)

SEQ{COMPILE(s))

Also, we define the functions encode,, : s —► COMPILE (a)
and decodes : COMPILE{s) -* s in AfSA, with time com-
plexity O(l) and work complexity linear in the size of the
input, with the property decodes(encodes(x)) = x, for every
x S s. The definition of the functions encode and decode
are rather standard, and are omitted from this extended
abstract.

Finally, we can prove:

Proposition 7.4 Let f : s -+ s' be some function in USA
with time and work complexity T, W. Then, for every e >
0, there is some function COMPILE(f) : COMPILE(s) —
COMPILE(s1) in SA which "simulates f", i.e. for every
x, COMPILE(f)(encode(x)) = encode(f(x)), with time and
work complexity0(T), 0(W1 + e). Moreover, f requires "the
same number of BVRAM registers" for every e.

Proof. (Sketch) By induction on the structure of /.
All cases are straightforward, except for the case when / =
map(g), where we use the Map lemma. D

7.2 Equivalence of S.4 and BVRAM

The types in SA are slightly richer than those of the BVRAM:
S.4 allows for types like [unit + N + N x N] + [N x N] x
[N] + unit, while the types on the BVRAM are only of the
form [N] x ... x [N]. However, encoding of S.4 types into
BVRAM types is straightforward.

Proposition 7.5 S.4 and BVAM are equivalent, i.e. any
function f in SA with time and work complexity T, W can
be simulated on a BVRAM with the same time and work
complexity, and conversely.

Proof. Simulating some function of SA by a BVRAM
program is easily done by induction on the structure of that
function. The converse is slightly more involved. Indeed, let
r be the number of registers of a BVRAM M, and h some
function in SA of type [N]x([N])r - [N]x([N])r performing
one step of the program of M (where the program counter is
encoded by a singleton sequence, on the first position). By
iterating h we indeed achieve the desired time complexity,
but not the work complexity, since at each step, the function
h touches all r registers. To avoid this, we define a sequence
of r functions /,, i = l,r. The inputs and outputs for /, are:
the values of the i "smallest" resgisters, at some particular
moment, the indexes of these i registers, the size S of the

next largest register, and the program counter. /, iterates
the one-step function as long as it only affects the i registers
it sees, and as long as all the i sizes stay less than S. If any
of these conditions is violated, /; stops. To do its job, /,
calls /,-i, which iterates steps on M by only looking at the
smallest i - 1 registers: when /,_i finishes, /, tries to do
one more step by taking into account the i's smalles register
as well, which /,-i ignores. If it cannot, then it returns (to
fi+i). Else, it performs the operation, and calls /,_i again,
possibly with a different set of i - 1 registers, from the set
of i registers it sees. D

Although only one direction of proposition is actually
needed for the compilation theorem 7.1, the converse is sig-
nificant from the point of view of optimizations: it implies
that any optimizations done for the BVRAM can also be
performed at the level of the SA language.

8 Conclusions

We intend to use NSC as a core for a "real" parallel language
for querying nested collections, by adding proven features
such as those encountered in functional languages like ML.
Guaranteed complexity bounds such as those emerging from
this paper can serve as useful guidelines for language design,
especially in the database area. Of course, the techniques
we have used in the translation of map-recursion and in the
unnesting of nested parallelism need to be validated by prac-
tical implementations. Equally important is to continue to
investigate the practical expressiveness oiMSC by attempt-
ing to represent various known efficient parallel algorithms.
Another direction of investigation is to develop optimization
techniques for this language by using ideas that have been
proved useful in databases.

References

[AB88] Serge Abiteboul and Catriel Beeri. On the
power of languages for the manipulation of
complex objects. In Proceedings of Interna-
tional Workshop on Theory and Applications of
Nested Relations and Complex Objects, Darm-
stadt, 1988. Also available as INRIA Technical
Report 846.

[BBW92] Val Breazu-Tannen, Peter Buneman, and Lim-
soon Wong. Naturally embedded query lan-
guages. In J. Biskup and R. Hull, editors, LNCS
646: Proceedings of 4th International Confer-
ence on Database Theory, Berlin, Germany,
October, 1992, pages 140-154. Springer-Verlag,
October 1992. Available as UPenn Technical
Report MS-CIS-92-47.

[Ble90] Guy E. Blelloch. Vector Models for Data-
Parallel Computing. MIT Press, Cambridge,
Massachusetts, 1990.

[Ble93] Guy Blelloch. NESL: A nested data-parallel
language. Technical Report CMU-CS-93-129,
Carnegie Mellon University, Pittsburgh, PA
15213, 1993.

[BS90] Guy Blelloch and Gary Sabot. Compiling
collection-oriented languages onto massively
parallel computers. Journal of Parallel and Dis-
tributed Computing, 8:119-134, 1990.

[BTS91] V. Breazu-Tannen and R. Subrahmanyam. Log-
ical and computational aspects of programming
with Sets/Bags/Lists. In LNCS 510: Proceed-
ings of 18th International Colloquium on Au-
tomata, Languages, and Programming, Madrid,
Spain, July 1991, pages 60-75. Springer Verlag,
1991.

[Cur88] P. L. Curien. The Ap-calculus: An ab-
stract framework for environment machines.
Technical Report URA 725, Laboratoire
d'Informatique, Departement de Mathema-
tiques et d'Informatique, Ecole Normale Su-
perieure, 45 Rue d'Ulm, 75230 Paris Cedex 05,
France, 1988.

[HS86] Daniel Hillis and Guy Steele. Data paral-
lel algorithms. Communications of the ACM,
29(12):1170-1183, 1986.

[Jaj92] Joseph Jaja. An Introduction to Parallel Algo-
rithms. Addison-Wesley, 1992.

[Kah87] Gilles Kahn. Natural semantics. In Proceedings
of Symposium on Theoretical Aspects of Com-
puter Science, pages 22-39. Springer-Verlag,
1987.

[KLGLS90] Kathleen Knobe, Joan D. Lukas, and Jr. Guy
L. Steele. Data optimization: Allocation of ar-
rays to reduce communication on SIMD ma-
chines. Journal of Parallel and Distributed
Computing, 8:102-118, 1990.

[Lei92] Frank Thomson Leighton. Introduction to Par-
allel Algorithms and Architectures : Arrays,
Trees, Hypercubes. Morgan Kaufmann Publish-
ers, 1992.

[MH88] Zhijing Mou and Paul Hudak. An algebraic
model for divide-and-conquer and its paral-
lelism. Jounal of Supercomputing, 2:257-278,
1988.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper.
The Definition of Standard ML. MIT Press,
1990.

[SBT94]

[SV84]

[Val75]

Dan Suciu and Val Breazu-Tannen. A query
language for NC. In Proceedings of 13th ACM
Symposium on Principles of Database Systems,
Minneapolis, Minnesota, May 1994. To appear.
See also UPenn Technical Report MS-CIS-94-
05.

Larry Stockmeyer and Uzi Vishkin. Simulation
of parallel random access machines by circuits.
SIAM Journal of Computing, 13:409-422, May
1984.

L. G. Valiant. Parallelism in comparison prob-
lems. SIAM Journal of Computing, 4(3):348-
355, 1975.

10

A The Nested Sequence Calculus MSC

We define a type context T to be a set of the form F = {x\ : si,...,xn : s„}, where z,- are variables and s; are types. We
write T t> M : t, or T t> F : s —* t, when we want to say that, under the type assumptions of T, the term M has type t, or

the function F has type s —» t. Below are the rules defining the language. Recall that B = unit + unit.

Variables, Errors, Constants, Arithmetic

x:t,T t>x:t r t>n':* T > n : N ln C N>

TOAf:N TOiV:N , ^ „ roM:N r O TV : N
r 0 M op TV : N t°P c "J r 0 M = TV : bool

Type products

T t> M : s,T > N : t T t> M :sxt T t> M : s x t
Tt>():unit T O (M, TV) : s x t T 0 *i(M) : s T t> w2(M) : t

Type sums

r O M : s Tt>M:t T\>M:s + t x : s,T O TV : u y:t,T\>P:u
r 0 ini(M) : s + t T 0 in2(M) : s + t T \> case M of im{x) ^ N \ m2(y) => P : u

Functions

x: s,T t> M :t T O F : s -+ t, M : s
r t>Xx :s.M :s-+t T 0 F(M) : t

Iteration

T \> P :t^ bool T 0 F : t -» t
T 0 while(P,F) : t ->■ t

Collections

r 0 M : t r 0 M : [t] rt>JV:[i] T X> M : [[*]]
r O 0 : [t] r O [M] : [t] r 0 M@TV : [t] r O flatten(M) : [t\

T t>M :[t] T >M:[t] T \> F : s ^ t
T 0 length(M) : N TO pet(M) : t T > map(F) : [s] — [t\

Sequences

r oM ■.\s] r oN:[t] r 0M: [<] rt>M:[i] T \>N: [N]
r 0 zip(M, TV) : [s x t] T O enumerate(M) : [NJ TO sp^tt(M, TV) : [[t\ V~

Weakening

rt>«:(
E : s, T >«:i

11

B Operational Semantics

We define an environment to be a finite set of the form p = {ii = C\,..., xn = C„}, where xi,..., xn are variables, and
C\,..., Cn are S-objects. We say that p is associated to some type context T iff p and T mention exactly the same variables
and if the type of C, is the type of the variable z, in T.

The following rules define the ternary relation p • M JJ C and the 4-ary relation p • F(C) JJ C", where p is associated to
some type context T such that T t> M :t, or T t> f : s —* t respectively.

Variables, Errors, Constants, Arithmetic

x = C, p • x JJ C p • n JJ n

p»MJJra p • N JJ n
p» M + N JJm + n

(similar for all op € £ and

Type products

 p.MJj-C ptNtyD p»M ty(C,D) p»M JJ (C, £>)
p. ()U() p . (M, iV) JJ (C, J) -Ki{M)tyC TT2(M)JJJ

Type sums

Functions

Iteration

Collections

p»M JJC p.M JJC p«I|iiii(C) x = C,p*N IJ.D
p*im{M) JJzni(C) p»in2(M) JJm2(C) p • case M of i»i(i) =>• N \ m2(x) => P JJ. D

p»JVJJC p«f(C)JJJ z = C,p»MJJ.P
p»F(N)i).D p»(Ax.M)(C) JJJ

p « P(C) JJ false p > P(C) JJ true p»f(C)JJC' p > u)fti/e(P, f)(C") JJ J
p • u)/iz7e(P, P)(C) JJ C p • while(P,F){C) JJ £>

p«M JJC p » M JJ [Co,... Cm-i] p » AT JJ [Jo, ■ ■ ■, Dn-i]
p • [M] JJ [C] p • M @N JJ [Co , . . . , Cm-1 ,D0,..., Dm-l]

P,M JJ [[Coo, CQ1,...],[C10,C11, ...],...] p.MJJ[Co,...,Cn_1

p • flatten(M) JJ [C00, Coi,..., Cio, Cu,...] p • length{M) JJ n

p * M JJ [C] p.f(Co)|J)o ... p«F(C„-1)JJ Dn-i
p*get(M)i).C p • map{F)([Co,. . •, C„_i]) JJ [Jo,..., -Du-iJ

Sequences

p » M JJ [Co,..., C„-i] p « JV JJ [Jo,..., Z?n-l] P«MJ;[CO,...,C„-I]
p • zip(M, N) JJ [(Co, Jo),..., {Cn-i,Dn-i)\ p»enumerate(M) JJ [0,..., n - 1]

 p> M JJ [Co,. ..Cno-)., .. + nm_J P» iV JJ [n0,...,Wm-i]
p • SpUt(M, N) JJ [[Co, . . . , C„0_l], [C„0, . . . , Cno + nj-l], • • ■ , [Cn0 + .. . + 7ITO_2 , • • • , Cno +... + nm_ t]]

Weakening

p.MJJ-C p«f(C)JJJ
= C',p.MJJC x = C, p . F(C) JJ D

12

C The Nested Sequence Algebra AfSA

Errors, Constants, Arithmetic

n £ I op € -
0' : unit ->t n: unit -*■ N oy:NxN^N

Function identity and composition

/ : r —> s g : s —> t

= : hJ X I

Type products

Type sums

idt :i —>■ t

/i : s -+ *i f2-s^t2

go f :r -* t

t -> wnz't {fi,h) ■ s -* h X <2 7Ti : ti x t2 -*■ ti 12 : <i X <2 -+ *2

/1 : si —> < f2 : s2 -* t
im : h -»• <i + 22 m2 : <2 — *i + <2 /1 + /2 : «i + «2 -► t 6 : (U + h) x t -* h x t +12 x t

Iteration

p: t-> B / :f->f
while(p, f):t—*t

Collections

: unit —► [t] singleton : t —► [t] [t] x [t\ - [ij /fatten : [[tJJ - L*J

 ___ _____ ___^A__
/erifft/! : [f] — N »et :[<]-*< map(/) : [s\ — [tj

Sequences

zip :'[s] x [2] —► [s x <J enumerate : [t] —► N

Broadcast This replaces the "free variables" present in AfSC.

p2 : s x [2] -» [3 x 2]

sp« : [t] x [NJ — [|fJJ

The evaluation relation /(C) JJ. C", for / some function in AfSA of type s — 2 and C, C" S-objects of type s and t
respectively, is defined in a way similar to the definition for AfSC, but simpler because functions in AfSA do not have
free variables, hence there is no'need for an environment. The time and work complexity T(f,C) and W(f,C) are defined
accordingly.

Proposition C.l Any closed function f g AfSC with time and work complexity T, W is expressible in AfSA by some function
f with time and work complexity 0(T), 0(W), and vice versa. Thus, AfSC and AfSA have the same expressive power.

13

D The Sequence Algebra SA

Scalar types are: a ::= unit | N | a x a \ s + a. Scalar functions ip : a —► s' are given by:

Constants, Arithmetic

n 6 I op e E
ra : «mi ■

Function identity and composition

op : N x =: IM X

zrfs : s —>• s

til h
ip : a —► s ip : s —> a

ip o ip : a ^ s

Scalar type products

yi : a —> Si Ifi2 '■ 8 —» S2

ls : s -f wm'i 7Ti : Si x s2 -> si 7r2 : si X s2 —>■ s2 {<fi, <p2) ■ s —> Si X a2

Scalar type sums

ipi : si —» 5 y>2 : S2 —» a
i : si -+ si + s2 in2 : s2 -■ si + «2 <^i + p2 : «l + «2 ^ s 5 : («i + s2) x a -> si x s + s2 x <

(Cont'd next page)

14

Flat types are: t ;:- unit \ [s] \ t x t \ t + t. Functions m SA f : t -+ t' are given by:

Errors and Scalar operations

ip : s —> s' a scalar function
Ql : unit —► t map(tp) : [s] —^ [s]

Function identity and composition

j' _ . 4' . iii / : t -> f g: t'-+ t"
idt :t —► t g 0 / : t —> t

Flat type products

Flat type sums

 h ■ t -> <i f2-t^t2

\t : t->■ unit -Ki : ti x t2 -> ti ir2 : h x t2 -> <2 {fi, f2) ■ t-^ (ti,t2)

fi:ti-+t /2 : *2 - *
,-ni : ij — *! + i2 m2 : t2 — <i + «2 fi+f2-h+t2^t b : (ii + t2) x i -► <i x t + t2 x t

Iterations

p:f — B / :t-> t
while(p, /):!—>■<

Collections

unit —>• [s] singleton : um'f —> [um£] : [s] x [s] —► [sj /engt/i : [s]

empty? : [s] o-i : si + s2] -> [si] 0-2 : [si + s2\ -► [s2\

Sequences

zip : [s] x [s1] — [s x s'] enumerate : [s] — [NJ 6m_ro«te : ([s] x [N]) x [s'] — [s'

sbm.route : (W x [NJ) x ([«'] x [Nj) - [s'\

Example D.l Informally we show how to compute combine : [B] x [s] x [s] -+ [s], where combine{f,x,y) combines the lists
x and y, according to the flags given by f. The resulting list will have the same length as f, and will contain some x, on
those positions where f is true, and some y, where f is false. E.g. when f = [true, false, false, true, false, true, true] and
x = [xo,x1,x2,x3],y = [2/0,3/1,2/2], then combine(f,x,y) must be [x0,y0,yi,x1,y2,x2,x3]. To compute combine in SA, start
by enumerate-ing f, to get [0,1,2,3,4,5,6], and by transforming the booleans into 0 and 1, to get [1,0,0,1,0,1,1]. Now
apply bm-route to select from the first list those elements having a 1 in the second list, and obtain [0,3,5,6], Similarly,
we obtain [1,2,4]. These two lists tell us on which position each element of x and y must end up. Next, we subtract each
number in this list from its right neighbor (by considering 7 = length(f) to be the right neighbor of the last element), with the
exception of the first position, where we also add the number itself. I.e., we get: [0 + (3 - 0), 5 - 3, 6 - 5, 7 - 6] = [3, 2,1,1]
and [1 + (2 - 1), 4 - 2, 7 - 4] = [2,2,3]. Now we bm.route x and y, using these two lists as replication sequences, and get
[x0,x0,x0.x1,xl\x2,x3] and [2/0,2/0,2/1,2/1,2/2,2/2,2/2] respectively (both have the length of f). Finally, we zip them together
with f, and map some scalar function which selects Xi or y, according to the flag.

15

